Harovel G. Wheat MANGANESE OXIDE CATHODES FOR RECHARGEABLE BATTERIES
نویسندگان
چکیده
Dedicated To my wife, Dohee Kwon v Acknowledgement First of all, I would like to express my deep gratitude to my advisor, Dr. Arumugam Manthiram, for having guided me to finish my research successfully and provided me precious support and constant encouragement. Without his support, it would have taken much longer to finish my work.
منابع مشابه
Regenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries
Manganese dioxide cathodes are inexpensive and have high theoretical capacity (based on two electrons) of 617 mAh g-1, making them attractive for low-cost, energy-dense batteries. They are used in non-rechargeable batteries with anodes like zinc. Only ∼10% of the theoretical capacity is currently accessible in rechargeable alkaline systems. Attempts to access the full capacity using additives h...
متن کاملHigh Capacity, Temperature-Stable Lithium Aluminum Manganese Oxide Cathodes for Rechargeable Batteries
Manganese oxides are of great interest as low cost and environmentally sound intercalation cathodes for rechargeable lithium batteries, but have suffered from limited capacity and instability upon cycling at the moderately high temperatures (50-70°C) encountered in many applications. Here, we show that LixAl0.05Mn0.95O2 of both the monoclinic and orthorhombic ordered rock salt structures exhibi...
متن کاملSodium Manganese Oxide Thin Films as Cathodes for Na-Ion Batteries
This paper presents the fabrication and characterization of sodium manganese oxide cathode thin films for rechargeable Na-ion batteries. Layered oxide compounds of nominal compositions Na0.6MnO2 and Na1.0MnO2 have been prepared by radio frequency magnetron sputtering and post-annealing at high temperatures under various conditions. The Na0.6MnO2 thin films possess either a hexagonal or orthorho...
متن کاملCustom designed nanocrystalline Li2MSiO4/reduced graphene oxide (M = Fe, Mn) formulations as high capacity cathodes for rechargeable lithium batteries.
Nanocrystalline Li2MSiO4 (M = Fe, Mn) particles embedded between in situ formed rGO sheets are obtained by adopting customized solvothermal synthesis. An appreciable room temperature specific capacity of 149 mA h g(-1) with 89% capacity retention and 210 mA h g(-1) with 87% retention have been exhibited by Li2FeSiO4/rGO and Li2MnSiO4/rGO composites, corresponding to the participation of close t...
متن کاملElectrodes with high power and high capacity for rechargeable lithium batteries.
New applications such as hybrid electric vehicles and power backup require rechargeable batteries that combine high energy density with high charge and discharge rate capability. Using ab initio computational modeling, we identified useful strategies to design higher rate battery electrodes and tested them on lithium nickel manganese oxide [Li(Ni(0.5)Mn(0.5))O2], a safe, inexpensive material th...
متن کامل